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Synopsis

One perspective emphasizing the importance of stochastic processes in determining coral reef fish assemblag-
esimplies that there is little organization in species richness, abundance structure, and spatial distribution. We
examine the degree to which this perspective is correct by analyzing distribution of fishes on a collection of
patch reefs (Discovery Bay, Jamaica). We ask the question whether these patches accumulate species and
individuals in a manner consistent with stochastic expectations. To address this question we use two concep-
tual models, each permitting a different insight. One assumes that fish are distributed stochastically on patch-
es while the other assumes presence of restrictions on fish distribution due to habitat structure. For each
conceptual model we use two types of benchmark: we compare observed patterns to those predicted by theo-
retical models, and we also compare observed patterns to those obtained from a random reallocation of fish
individuals to patches. We found that the conceptual model assuming stochastic processes appeared to pro-
vide weaker explanation of patterns than the conceptual model that includes restrictions due to habitat struc-
ture. Further, and more importantly, we found that (i) the community is shaped by a mixture of stochastic and
non-stochastic mechanisms, and (ii) the stochastic assembly processes decrease in importance for species
restricted to fewer microhabitat types and sites. Our study therefore indicates that patches do accumulate
individuals and species in a manner consistent with stochastic expectations, however, this applies primarily to
the habitat generalists (unrestricted species). By the same token, increased habitat specialization by some
species imposes constraints on the stochastic model such that it eventually fails.

Introduction

Assemblages of coral reef fish are systems excep-
tionally rich and highly variable in time and space.
This has challenged ecologists to provide an expla-
nation which has resulted in a number of models
and perspectives (e.g. Sale 1980, Anderson et al.
1981). Of these, the stochastic perspective has
gained considerable momentum and available evi-
dence appears to suport it. Specifically, fish compo-

sition and its variability on patch reefs is explained
as a function of random events including (a) fish ar-
rival, (b) creation of vacant sites via mortality and
migration, and (c) establishment on or colonization
of patches (Sale & Dybdahl 1978, Williams 1982,
Victor 1983, Sale & Douglas 1984, Sale & Steel 1986,
Doherty & Williams 1988, Bohnsack 1989, Robert-
son & Duke 1990). Some argue that any organiza-
tion in reef fish assemblage reported by others may
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Fig. 1. Contrast between spatial patterns produced by unrestrict-
ed (a) and micro-habitat restricted fish distributions (b). For sim-
plicity we use two species only and do not show individual
patches. Both species (Species 1 ‘', N, = 80; Species 2 ‘@, N, =
20) are placed randomly such that in Figure 1b Species 2 ‘@’ is
restricted to a micro-habitat (darker shading). This case would
occur if the two species respond to two different levels of habitat
structure with the Species 1, utilizing all micro-habitats (habitat
generalist) and Species 2, restricted to one micro-habitat only
(habitat specialist).

therefore be a function of biologically trivial factors
such as sampling biases (e.g. Sale & Guy 1992).
This stochastic explanation, however, leads to the
counter-intuitive conclusion that there is little orga-
nization in the coral reef fish assemblages. It does so
despite a high number of interacting species and the

general expectation that complex systems are orga-
nized (e.g. Drake et al. 1996, Kauffman 1993). We
suggest, therefore, that these assemblages may be
more organized than the stochastic view implies.
We also suggest that the failure to detect their orga-
nization is due, in part, to insufficient attention paid
to proper scaling of observations and analyses. For
example, if species within an assemblage perceive
and therefore respond to the environmental tem-
plate at more than one spatial and temporal scale
(e.g. Hanski 1982, Kolasa 1989, Wiens 1989, Kotliar
& Wiens 1990, Kareiva 1990, Milne 1991), then the
distribution pattern may appear deterministic or
stochastic depending on the scale of observation
(Allen & Starr 1982, Maurer 1985, Collins & Glenn
1990). Such dependence on the method and ap-
proach is bound to produce alternative and some-
times conflicting explanations.

We therefore pose a question: Given a landscape
of different size patches and an available species
pool represented by n individuals, does each patch
accumulate individuals and species in a manner
consistent with expectations of stochasticity?
Stated differently, is the presence of a species on a
patch a probability function of patch size and num-
ber of individuals participating in the lottery, or is
the presence of a species dependent on non-sto-
chastic alternatives — the simplest involving re-
strictions on which patch a species may colonize and
survive on? To answer this question we use data
from a natural fish community to test two different
conceptual models that emphasize different ecolog-
ical mechanisms.

The first model borrows a combination of as-
sumptions underlying both the ‘island biogeogra-
phy theory’ (IBT, MacArthur & Wilson 1967) and
variable recruitment in space and time (Sale 1980).
Indeed, patches are not islands in the sense of Mac-
Arthur & Wilson (1967) because patch assemblages
are not self maintaining populations, but aspects of
IBT do apply to fragmented environments such as
coral reef patches (Putman 1994). Thus, we use IBT
only partially by borrowing one of its assumptions
that the number of species on a patch is a function of
the species immigration and emigration rates (or
recruitment and subsequent removal of individu-
als). The assumption that these rates are influenced



by patch size is not unreasonable (Sale 1980, An-
derson et al. 1981, Ogden & Ebersole 1981, Bohn-
sack 1983, Rahel et al. 1984, Clarke 1988, Sale &
Steel 1989, Winemiller & Pianka 1990). In fact, simi-
lar assumptions are made in patch dynamic models
in general.

The combined ‘IBT-variable recruitment’ con-
ceptual model neither expects nor requires species
to aggregate within the patch reefs system accord-
ing to species specific criteria such as patch quality
or presence of other species. The model thus eval-
uates assemblage patterns as a function of patch
size and chance recruitment alone (Fig. 1a). Conse-
quently, this model is insensitive to any habitat
structure that might be perceived by species if other
attributes of patches were relevant. For example,
there might be two groups of patches, one with good
hiding crevasses and the other without. Next, within
each group of patches fish might discern those with
predators to those without predators, and so on.
The perception of such habitat subdivision by fish
might result in their structured distributions. This
aspect is best analyzed by the second model, the
‘habitat-based model’ (HBM; Kolasa & Strayer
1988, Kolasa 1989).

The ‘habitat-based model’ assumes nested patch-
iness of habitat space as a major force shaping spe-
cies distribution and abundance. This means that
species differ in their ability to use the habitat. For
example, according to HBM, there will be species
with broad ecological ranges (or habitat tolerances)
which span the diverse and complete set of micro-
habitats (habitat generalists), and there will also be
species restricted to a subset of microhabitats only
(habitat specialists). Since ecological ranges and
site distributions of specialists are largely nested
within those of generalists (i.e. habitat specialists
may be considered as operating at subdivisions or
lower levels of habitat structure — Fig. 1b), we view
the habitat and the associated community as being
hierarchical. In such a hierarchy, specialists face a
more fragmented environment than generalists
which permits, given some additional assumptions,
to calculate their expected relative abundances.
This means that the colonization and extinction lot-
tery is limited to varying degrees depending on the
number and kind of patches the species are per-
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mitted to use under the ‘habitat-based model’. For
example, species with special habitat requirements
will be able to engage in the stochastic lottery on
some patches only while species with few restric-
tions have the potential to colonize any patch.

The two alternative models, one with no restric-
tions on patch colonization and the other with spe-
cies-specific restrictions, result in different expecta-
tions of community patterns. Such expected com-
munity patterns can be compared to those observed
in a natural system. Differences in the relative fit of
the expected (= theoretical) versus observed values
indicate and contrast the relative importance of sto-
chastic effects alone vis-a-vis habitat structure ef-
fects.

We wish to emphasize here that we are not in-
terested in the merits of the models themselves but
only in their ability to discriminate whether other
mechanisms are involved that may, incidentally,
produce an apparency of stochastic pattern. Unfor-
tunately, patterns predicted by each model are not
directly comparable (i.e., the first predicts richness,
and the second predicts abundance). Thus, to gain
and document insights into the mechanisms struc-
turing fish community we take the additional steps:
(i) divide the species pool into groups according to
whether a species is a habitat specialist or generalist
(cf. HBM Kolasa 1989), and (ii) apply the ‘IBT-vari-
able recruitment’ model to each of the species
groups.

This strategy permits mutual verification of re-
sults produced by the two conceptual models. Spe-
cifically, we hypothesize that if the HBM indicates
strong effects of habitat structure, then IBT will ap-
ply well to broad range species only but fail with re-
spect to narrow range species. The reason for this
prediction is simple: as the restrictions as to which
patch reefs can be effectively colonized increase in
importance, a corresponding decline in importance
of individual numbers and patch size is expected.

Methods
Field

Data on fish distributions were collected from
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patch reefs in Discovery Bay, Jamaica, over three
two-week periods (25.12.1990-10.1.1991, 25.12.1991-
10.1.1992, and 25.12.1993-10.1.1994). All observa-
tions were conducted during daylight hours by di-
rect visual census using SCUBA. We minimized
weaknesses normally associated with this method
(Diamond & May 1977, Rahel et al. 1984, Andrew &
Mapstone 1987, Fowler 1987, Bellwood & Alcala
1988, Greene & Alevizon 1989) with the following
procedures: (i) two divers settle simultaneously on
opposite sides of a patch-reef, (ii) each diver re-
cords one half of the local species pool (S, = 71);
the division determined by species daytime local
migratory behaviour (e.g., Pomacentridae and Ho-
locentridae versus Scaridae and Labridae), (iii) fish
counting starts after a five minute habituation peri-
od, (iv) for the subsequent twenty minute observa-
tion all individuals within 1 m distance from the
patch surface are recorded, such that, (v) the two
divers complete a 360° rotation around the patch-
reef in four five-minute 90° shifts.

After completing each assemblage enumeration,
we recorded physical parameters for the patch
(depth, X-Y-Z dimensions, and distance to sur-
rounding patches). We measured depth as the per-
pendicular distance from the water surface to the
base of the coral patch. Although other methods
have been used to determine reef surface area (e.g.,
Risk 1972, Molles 1978), we approximated it by in-
tegrating the patch X-Y-Z dimensions into the
equation for the surface area of a half ellipsoid. We
chose this particular method because (a) we fol-
lowed the assumption that in the back reef of Dis-
covery Bay, Jamaica, large patches contain propor-

tionately the same habitat complexity relative to
smaller patches (communiqué Risk), and (b) of its
simplicity. Distances to nearby patches were mea-
sured by the shortest distance between the two
patches.

The minimal number of patches to sample was
determined by a requirement of the ‘habitat-based
model’ (Kolasa 1989) that the ecological range cov-
ered by sampling exceeds that of the broadest spe-
cies. This ensures that the scale of sampling is suffi-
cient to measure all species adequately. Operation-
ally, we define ecological range (ER) as a ratio of
the number of patches a species is found on (n) and
the area of these patches (SA) to the total habitat
available (n,,;* SA,,.)- Ecological range is thus:

total

ERi = \/ (ni_ntotal)* (2 SAl/Z SAtmal)‘ (1)

The measure scales from zero to one. Species with
ER values close to zero are those species found on
few and/or small patches. By contrast, species with
ER values close to one are found on the majority of
the patches, especially the larger patches. Although
this measure of ecological range is arbitrary (other
parameters such as consumable resource range or
microhabitat requirements could be used instead)
we believe that, given the nature of our tests, the
above parameters are adequate. The biological in-
terpretation of this measure is that the number of
sites reflects, to some degree, the exposure of a spe-
cies to different environmental conditions and, in-
deed, its ability to cope with them (cf. Brown 1984,
Kolasa 1989). It also links the ecological range to the
size of a patch by assuming that larger patches, not

Table 1. Summary of patch reef descriptors. Frequency distribution of surface areas is skewed towards the smaller patches (p < 0.05).

Parameters Sampling weeks

Season 1 Season 2 Season 3
Number of patches 35 40 39
Minimum surface area (m?) 0.20 0.30 1.10
Maximum surface area (m?) 19.5 33.1 30.9
Mean surface area (m?) 543 8.00 797
Standard deviation (m?) 455 8.42 6.70
Skewness 1.098 1.464 1.479
Total surface area (m?) 190.3 312.0 318.8




unlike larger islands, expose fish to a more diverse
habitat (e.g. Risk 1972, Tonn & Magnuson 1982).
We sampled 114 patch reefs from a 10 000 m” area of
back reef from Discovery Bay, Jamaica. No patch
was more than 15 m deep, nor were any patches
closer than 2 m to their next nearest patch. Patch
surface area ranged from 0.24 m* to 33 m* (with a
higher frequency of smaller patches compared to
larger patches: mean patch size is 7.2 m’ and the
S.D. equal to 6.86 m” - Table 1). Total patch surface
area is 820 m* (8% of back reef habitat).

The first term in equation 1, n,, is abundance of
species i totaled for all patches. For some species
(e.g., species of greater local mobility — Scaridae
and Acanthuridae), species abundance could be
overestimated if some individuals are counted sev-
eral times on different patches. We reduced this
source of error by weighing each species abundance
by the mean time species were observed in associ-
ation with patches. This was estimated by timing
randomly selected individuals for five minutes
(daylight hours, N, _., = 580 fish). The number of
individuals timed differed among species and may
be a source of error.

We identified and included in the analysis 71 spe-
cies of fish from 21 families (Table 3). Patch associ-
ation ranged from 10% (Inermia vistata) to 100%
(e.g., Stegastes sp.). Depending on the sampling sea-
son, single species abundance ranged from 0 (Chro-
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mis cyanea) to 387 (Scarus coeruleus). Species
abundance totals are 813, 1554, and 991 for the three
seasons, respectively. The maximum patch richness
observed was 25 species (S, imum = 1 SPECiES, MEan =
10.0 species, and S.D. = 4.8 species).

Theoretically expected and null community patierns

Recall that we posed the question of whether each
patch accumulated individuals and species in a
manner consistent with expectations of stochastic-
ity. Statistical evaluation of the observed patterns
calls two types of benchmark. We need to know
what would be the patterns if each of the models
were correct. We also need to know what patterns
would emerge if most processes were stochastic.
The approach we take to answer the question in-
volves two steps. First, we search for the best fitting
theoretical equations and, second, we create a ‘null
assemblage’ (random reallocation of fish to patch-
es) to test observed data for stochastic effects.

Step 1: Theoretical equations

The first step contrasts the relative fit between the
expected (= theoretical) and observed patterns for
both richness (IBT — variable recruitment) and
abundance (HBM). Because we do not necessarily
know what the expected patterns are, we evaluate a

Table 2. Fits (coefficients of determination, r*) among the predicted patch richness (S) and species abundance (N) and the observed data.
The predicted values were obtained using the family of equations listed. We find that the equations that create the best correlations are
equation no. 9 and no. 11 for the two models respectively (shown by an asterisk).

Equation IBT-variable recruitment r Habitat based model r
1 S=SA 0.335 N =ER 0.727
2 S=SAInSA 0.316 N = ER InER 0.157
3 S=SA"Y 0.307 N =ER" 0.790
4 S =SA’ 0.276 N =ER? 0.816
5 S =SA’InSA 0.257 N = ER’InER 0.562
6 S =SA* 0.248 N = ER* 0.825
7 S=SA° 0.226 N = ER’ 0.827
8 S=¢e% 0.064 N=¢"® 0.774
9 S =SA™ InSA 0.339* N = ER" InER 0.150
10 S = (InSAY’ 0.314 N = (InRER)’ 0.212
11 S = SA (InSA)™ 0.002 N =ER (InER)" 0.852*
12 S =1InSA (SA)™ 0.005 N = InER (ER)™ 0.071
13 S =InSA (SA)? 0.038 N = InER (ER)™ 0.037
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Fig. 2. Patchrichness as a function of patch size for the null (open
circles, dashed line) and observed (closed circles, continuous
line) assemblages. Both relationships are best described (1, =
0.886.p <0.001. 1%, ...q = 0.343, p < 0.001) by the nonlinear equa-
tion: S = B, + B, (SA)"". Beta coefficients differ significantly be-
tween the two curves.

family of related equations to choose one that best
describes the observed data (Table 2). Once an
equation is selected, we interpret its coefficient of
determination as an indirect measure of impor-
tance of processes reflected in the assumptions of
each model.

As a direct comparison of the two models does
not permit a definitive answer as to whether sto-
chastic processes dominate the community struc-
ture (primarily because the models predict differ-
ent parameters — richness and abundance), we at-
tempt to combine insights from each of the two
models by the following procedure.

Step 2: Null assemblage

We grouped species according to species-specific
criteria and then compared patterns obtained with-
in each species group to ‘null patterns’ produced by
stochastic processes alone. We then chose the ratio
of ‘coefficient of determinations’ between observed
and null richness for each species group as an index
of pattern consistency with stochastic expectations.
Specifically, (i) we created a null (= stochastic) as-
semblage by random allocation of individual fish

species onto patch reefs with probability of coloniz-
ing a particular patch proportional to the total
abundance of that species and surface area of the
patch. This simplification ignores other factors such
as patch proximity to other patches, competitive
and opportunistic adult and predator-prey interac-
tions and others, but this appears to be an accept-
able strategy to generate stochastic assemblages
suitable for our tests (Sale 1980, Anderson et al.
1981, Ogden & Ebersole 1981, Bohnsack 1983, Ra-
hel et al. 1984, Clarke 1988, Sale & Steel 1989, Wine-
miller & Pianka 1990). We verified this assumption,
for patch richness only, by showing that the rela-
tionships in so generated assemblages approximate
those in the observed assemblage. Specifically, we
find that the regression model that maximizes the
correlations (see Appendix) between patch rich-
ness and patch surface area is the same for both the
observed and null (= stochastic) assemblages. This
model assumes the form: S = B, + B, (SA)"°, where S
is patch richness, and SA is patch surface area
(F gpservea = 0.343, and £ emblage = 0-886, Py and
Pobservea < 0-001). The significant difference between
the respective regression models lies in the values of
the beta coefficients. This difference leads to a pre-
diction of a higher patch richness for the null assem-
blage (paired t-test mean difference = 1.553, p =
0.005) (Fig. 2). (ii) we allocate each species in the
species pool to species groups based on the princi-
ples of the ‘habitat-based model’ (for both null and
observed assemblages). We use the ‘habitat-based
model’ specifically because it groups species by sim-
ilarities in how they perceive and respond to a tem-
plate of diverse microhabitats. The model clusters
species according to similarities in their ecological
range and abundance. The assumption made is that
the fewer microhabitat types a species perceives to
be suitable, the more restricted and, possibly,
patchy its range becomes. This results in a cost (e.g.,
finding mates, shelter from predation, foraging)
which is measurable in terms of the species abun-
dance and distribution. The two variables, ecolog-
ical range and abundance, can then be used to group
species on the premise that such grouping will re-
flect major differences in how species relate to their
habitat. We use a cluster analysis with Euclidean
distance and average linkage on species ecological
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Table 3. Continued.

Gp

Total surface area

Patches

Abundance

Time

Common name

Species

Family

69.5

0.0
0.0
137.6
117.7
172.0

0.0

1.0
0.8

Yellowtail hamlet

Shy hamlet

H. chlorurus

304

0.0
67.6

H. guttavarius
H. indigo

2.0

77.7
273.0

11

13 13

1.0
1.0

0.9

Indigo hamlet

0.0
78.0

Black hamlet

H. nigricans
H. puella

1

58 14 18 33

29

24

Barred hamlet

5.5
0.0

0.0
17.3

62.8

23.1

0.5

Butter hamlet

H. unicolor

41.9

0.0

1.0
1.0
1.0
1.0
1.0

0.5

Masked hamlet

Hypoplectrus sp.

29.9

0.0
0.0
0.0

Peppermint bass
Tiger grouper
Tobaccofish

Liopropoma rubre

0.0
0.0

37.1

Mpycteroperca tigris

5.8
0.0
44.8
288.4

Serranus tabacarius

S. tigrinus

0.0
0.0
54.0

Harlequin bass

0.0
226.7

Bluestriped lizardfish
Sharpnose puffer
Bandtail puffer

Synodus saurus

Synodontidae

1

47 74 11 22 31

22

0.7

Canthigaster rostrata

Tetraodontidae

2.8 26.4

0.0

0.7

Sphoeroides spengleri

263

range and abundance to identify three such groups.
(iii) the coefficients of determination for the area-
richness relationship obtained for the entire ob-
served and null (stochastic) assemblages differ in
magnitude (1%, ... = 0.343, 1 = 0.886).
The coefficients of determination for the three spe-
cies groups identified by the cluster analysis are ob-
tained via an equation selection process that in-
volves several decision steps (see Appendix for
more details). In order to assess how different spe-
cies groups contribute to the overall explanation of
34% and 89% of variance obtained for the entire
assemblages, respectively, we express values ob-
tained for the three species groups in relative terms
(i.e. group coefficient/assemblage coefficient).
These relative values are directly comparable be-
tween the observed and null data sets by generating
aratio, an ‘index of stochasticity’, of the observed to
null coefficients of determination. A ratio value
close to 1.0 means that the observed patterns is simi-
lar to the null one and, consequently, that a partic-
ular species group is distributed over the landscape
of patches in a manner consistent with the stochas-
tic mechanisms. A ratio value smaller than 1.0
means that members of the group respond to some
other mechanisms.

null assemblage

Results
Step 1: Theoretical equations

The equation S = SA"’ InSA (S =richness, and SA =
patch surface area) optimized the fit between the
expected (theoretical) and observed richness pat-
tern (Table 2, I’ i1 yariabie recruitment = 0-339). Similarly,
the equation, N = ER (InER)™ (N = species abun-
dance, ER = ecological range) optimized the fit be-
tween the expected (= theoretical) and observed
abundance patterns (1, .. pased modet = 0-852). Of the
two coefficients of determination, the one obtained
for ‘HBM’ is significantly higher than that for ‘IBT
—variable recruitment’. This implies that significant
constraints are in place on how the stochastic pro-
cesses are allowed to operate. A quantitative eval-
uation of this aspect follows.
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Fig. 3. Patch richness explained as a function of patch size for
three groups of species: Group 1 - habitat generalists, Group 2 -
intermediate species, and Group 3 - habitat specialists. The null
assemblage (a) exhibits substantially stronger relationships than
the observed assemblage (b) but the trends associated within the
groups are similar. The uppermost line (dotted) is the fit line for
the whole assemblage (as in Fig. 2).

Step 2: Null assemblage

We identified three species groups using cluster
analysis on ecological range and abundance of spe-
cies. The three groups differ significantly in their
mean ecological range and abundance (ANOVA
Tukey HSD matrix of pairwise comparison proba-
bilities all p < 0.001). Group 1 (S¢,,, = 9 Species) is
best characterized by species that are highly abun-
dant and found throughout most of the habitat
range for each of the three sampling seasons. Group
3 (SGroups = 34 species) comprises species having low
abundance (possibly even zero for one or two sam-

pling seasons) and found on few patch reefs only.
Group 2 (S = 28 species) shows intermediate
characteristics between Group 1 and Group 3 (Ta-
ble 3).

‘IBT - variable recruitment’ models for species
Group 1,2, and 3 differ in the proportion of variance
they explain between the observed and null data
sets (Fig. 3, Table 4). Specifically, the ‘index of
stochasticity’ decreases from habitat generalists
(Group 1) to habitat specialists (Group 3). These
results suggest that the stochastic assembly process-
es decrease in importance for species groups re-
stricted to fewer microhabitat types and sites. They
doso even despite the high richness found in species
Group 3.

Discussion

A preliminary comparison of the two models (as
outlined in Step 1 of the Results section) leads to
somewhat contradictory conclusions, and to diffi-
culties with a meaningful quantitative interpreta-
tion. On one hand, the ‘IBT —variable recruitment’
model points to significant stochastic processes as
governing the distribution of fish species on patch
reefs. On the other hand, the ‘habitat-based model’
clearly points to non-stochastic factors as governing
fish distributions. To add to this apparent contradic-
tion each model describes a different pattern (rich-
ness vs. abundance), and therefore a direct quanti-
tative comparison is not immediately informative
(34% vs. 85% of variance explained, respectively).

The analysis performed in Step 2 removes this ap-
parent contradiction and quantitative limitation as
to whether stochastic or non-stochastic factors
structure the fish assemblage. This analysis shows:
(i) that the community is shaped by a mixture of sto-
chastic and non-stochastic mechanisms, and that
(ii) there is a shift in predominance from stochastic
to non-stochastic processes along the generalist-to-
specialist species gradient.

We thus conclude that the two models are in fact
consistent; according to the ‘IBT — variable recruit-
ment’ model habitat generalists are distributed ac-
cording to stochastic expectations. According to the
‘habitat-based model’ constraints apply to the hab-



itat specialists, and this is precisely where the ‘IBT -
variable recruitment” model should fail and does
fail.

In summary, our analysis indicates that patches
do accumulate individuals and species in a manner
consistent with stochastic expectations (‘IBT - vari-
able recruitment’ model). However, this applies to
the habitat generalists only. The analysis further in-
dicates that increasing habitat specialization by
some species imposes constraints on the stochastic
model such that, at the opposite extreme (that of
the habitat specialists), the stochastic model fails.
This is not surprising if we assume habitat special-
ists are restricted to a specific set of patches within
the template of patch reefs. Thus, a lottery ap-
proach to their distribution is unlikely to show a
pattern of species accumulation that parallels the
distribution pattern of habitat generalists.

By contrast, the ‘habitat-based model’ performs
well because it predicts species abundance as a
function of landscape fragmentation. The model re-
quires that habitat specialists be restricted to some
patches only and be not permitted to use other
patches. The model has a good fit to the data be-
cause some, but not all, species are subject to such
spatial restrictions.

If we are correct, one can view the assemblage
structure as hierarchical, with groups of species
characterized by different habitat resolutions and
different densities. In such a hierarchical structure
stochastic factors may be important at any single
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level (species group), but in different proportions
and with different implications for generic models
such as ‘IBT — variable recruitment’ and habitat
partitioning models such as the ‘habitat-based mod-
el’.
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Appendix

We use a family of simple curvilinear and polynomial regression
models to optimize the fit between patch richness and paich sur-
face area for (a) entire null and observed assemblages, and (b)
null and observed species groups (Table Curve 2D — Jandel
1994). We use the following steps and criteria to choose the most
optimal equation: (i) the regression model is statistically signif-
icant, (i) the beta coefficient for the highest ordered term must
be statistically significant, (iii) once an equation meets the above
criteria we compare its F statistic with the F statistic for the next
equation that also meets these criteria but has one less ordered
term. We choose the model with the higher F statistic, (iv) iterate
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the above process (steps i to iii) for equations with consecutively
fewer terms, (v) if no curvilinear or polynomial equation is ac-
cepted, we chose the simple linear regression model (equation
no. 41) to describe the relationship (assuming it has not already
been chosen through the iterative process).

Simple curvilinear and polynomial equations (maximum 4th
order polynomial) used: 1 Iny =a + bx + cx’ + dx’; 2y’ =a + bx +
X+ dx% 3y za+bx+ el +dx 4y =a+bx+ox’ +dx’ Sy=a+
b(Inx)™ + ¢(lnx)? + d(Inx) ;6 y =a + b(x)” +c(x) 7 +d(x) Ty =
a+blnx + c(lnx)’ +d(Inx)*: 8 y = a + b(Inx)? + clnx + d(Inx); 9y =
a+bx+cxl+d(x) 10y =a+bx +cx’+dx’ 11 Iny =a+ bx +cx’ 12
y’=a+bx+cex13y™ =a+bx+ox’ 14y =a+b(Inx)™ +c(lnx)
15y=a+b(x)"+c(x)%16y=a+blnx + c(Inx) ;17 y =a + b(Inx)’
+clnx;18y=a+bx+c(x);19y=a+bx+cx;20Iny=a+bx; 21y
=a+be™22y=a+b(x)%23y=a+blnx(x)%24y=a+b(x)""
25y=a+b(x)";26y=a+blnx(x);27y=a+b(x)"28y=a+
b(Inx)™;29y=a+blnx;30y=a+bx""; 31 y=a+bx(lnx) ;32y=a
+b(lnx); 33 y=a+bx*Inx; 34y =a+be;35y=a+bx’;36y=a+
bx*%37y=a+bxinx;38y=a+bx;39y=a+bx"*40y=a+
bxlnx; 41y =a + bx.





