
Introduction

Despite many decades of theoretical development, ex-

perimentation, and debate, ecologists continue to disagree

about whether communities represent a select group of

ecologically compatible organisms, or are simply a ran-

dom subset of the regional species pool (Chase 2005).

Many studies have shown that competition and environ-

mental conditions can select the species that coexist at a

particular location, and influence species’ local abun-

dance (Menge 1976, Tilman 1982, Roughgarden and Dia-

mond 1986, Wellborn et al. 1996, Bohannan and Lenski

2000, Brown et al. 2001). These studies support the niche-

assembly view of community structure, which is that

communities represent non-random subsets of compatible

species. This view is challenged by neutral theory (Bell

2000, Hubbell 2001) which assumes that species have

identical per capita probabilities of birth, death, and mi-

gration. As such, species have an equal probability of

winning a competitive interaction and are therefore com-

petitively “neutral”. The niche-assembly and neutral

paradigms represent opposing views on community dy-

namics. Because they differ in their explanation of com-

munity patterns, they have important implications for

theoretical and applied problems in ecology.

Neutral theory has been criticized on the grounds that

it ignores processes known to influence the abundance

and distribution of species (McGill 2003, Chave 2004,

Chase 2005). Several recent studies evaluate neutrality by

comparing observed species patterns with the explicit or

implicit predictions of neutral models. These studies gen-
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erally either examine static patterns of species relative

abundance in one or more natural communities (Hubbell

and Foster 1986, Condit et al. 2000, 2002, Clark and

McLachlan 2003, McGill 2003), or use models to inves-

tigate the relationship between species patterns and com-

munity dynamics (Bell 2000, Chave et al. 2002, Volkov

et al. 2003). However, we know of no studies that com-

bine dynamical analysis with data from natural communi-

ties to test the predictions of neutral theory. Such studies

are needed to evaluate the underlying assumptions of neu-

tral models, such as the assumption that metacommunities

are at equilibrium (McGill 2003). Here, we compare the

temporal variation in species abundance predicted by

neutral models with that of aquatic invertebrates living in

49 rock pool communities. To generate model predic-

tions, we use the community and metacommunity assem-

bly algorithms described by Hubbell in his monograph on

the neutral theory (Hubbell 2001). Our purpose is to de-

termine whether the algorithms correctly describe pat-

terns of species abundance in a natural metacommunity.

To this end, we use Hubbell’s algorithms to determine the

value of two key parameters: the fundamental biodiver-

sity of the metacommunity, θ, and community migration

probability, m. Hubble defines the dimensionless parame-

ter θ as the product of the number of individuals in the

metacommunity, J�, and the mutation rate, ν (Hubbell

2001). Specifically, θ =2J�ν. The value of θ determines

the number of species found in the metacommunity and

their relative proportions. The value of m determines the

rate at which immigrants arrive at a particular community,

and reflects the relative connectedness of the community

with the metacommunity. When the value of m is high,

the relative proportions of species in a community closely

follow those of the metacommunity. Low values of m re-

duce the occurrence of rare species and increase the influ-

ence of local community dynamics on the number and

relative abundance of species within the community.

We first estimate the value of θ using a maximum

likelihood approach, the observed average size of the

metacommunity, and the averages of species relative pro-

portions at the metacommunity scale. We then estimate m

for three of the pools using our estimate of θ and the ob-

served annual community sizes and species abundances

of each pool. Thus, we directly apply Hubbell’s method

to test the predictions of his model.

Hubbell (2001) showed that neutral models that cou-

ple random demographic change with zero-sum commu-

nity dynamics generate multinomial species distributions

that often well approximate the observed distributions of

natural communities. Zero-sum dynamics refer to the

compensatory population dynamics of species in commu-

nities in which all available resources are fully exploited.

When all available resources are utilized by the members

of a community, no additional individuals can be sup-

ported. Under these conditions, the population sizes of

different species are interdependent; no species can in-

crease in abundance without a concomitant decrease in

the abundance of one or more other species. In the neutral

theory, individuals are assumed to be equally competi-

tive. Therefore, variation in species proportions among

communities is due solely to the effects of finite commu-

nity size and stochastic demographic processes. Under

neutral dynamics, the long term average of the numerical

proportion of each species in a community that receives

immigrants is equal to its proportional abundance in the

metacommunity.

At the community scale, neutral models reproduce

several well-known species distributions, including Tay-

lor power laws (Taylor 1961), species-area relations

(Rosenzweig 1995), and the distribution of species abun-

dance within communities (Bell 2001, Hubbell 2001).

However, whether these particular patterns are indicative

of community dynamics is by no means clear. Taylor’s

power laws can be generated from a variety of processes

(Allen et al. 2002), and there are multiple hypotheses for

the empirical relationship between the area of a sample

and the number of species it contains (Rosenzweig 1995).

Moreover, neutral and niche-based models generate iden-

tical patterns of species relative abundance (Chave et al.

2002, Chave 2004). Thus agreement between the above

general species patterns and the predictions of neutral

models does not represent a rigorous test of Hubbell’s the-

ory. Hubbell’s theory pertains to species dynamics, and

thus tests of his theory should focus on the dynamical as-

pect of community patterns (Chave 2004).

Methods

We used a combination of modeling, maximum like-

lihood, rarefaction, and statistical analysis to evaluate the

ability of Hubbell’s model to predict species richness and

relative abundance. For clarity, we use the terms observed

and simulated to distinguish respectively the communi-

ties and metacommunity represented by the natural (em-

pirical) system of pools from the simulated (neutral) sys-

tems generated by models. Although several workers

have contributed to the neutral theory (Caswell 1976,

Hubbell and Foster 1986, Bell 2000), Hubbell provides

the most complete development of the theory and related

models (Hubbell 2001, Volkov et al. 2003). Hereafter, we

mean specifically Hubbell’s approach when we refer to

neutral theory and neutral models. These models describe
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the occurrence and abundance of species in a community

in terms of the binomial distribution.

The study system: a natural metacommunity

For our analysis of observed species distributions, we

used data on the invertebrate species that inhabit 49 small

rock pools. The pools are located on a fossil reef, in the

vicinity of the Discovery Bay Marine Laboratory, Univer-

sity of West Indies, Jamaica. The data were collected as

part of an ongoing long-term monitoring project begun in

December, 1989. We analyzed the contents of nine sets of

samples that were collected in December 1989, and in

January of 1990, 1991, 1992, 1993, 1994, 1997, 1998, and

2002. To evaluate neutral models at the community level,

we focused on three of the 49 pools. To select three pools,

we grouped the 49 pools into three volume classes (l =

liters): < 10 l, 10 to 20 l, and > 20 l. We then chose a pool

in each volume class at random. Pool #12 has a volume of

3.0 l. Pool #9 is characteristic of large pools, with a vol-

ume of 29.0 l. Pool #29 falls between the two other pools

in volume at 20.0 l. Details on collection methods can be

found in Kolasa et al. (1996). For a description of the

physical features, water chemistry, and the environmental

conditions of the pools, see Romanuk and Kolasa (2002).

The study pools represent a random sample of 230 pools

that occur within a radius of 25 meters. The pools in the

study are less than one meter apart, on average. Pool vol-

ume ranges from 0.24 to 115.00 liters (mean: 14.96,

standard deviation: 21.06). Most pools contain less than

30 l. During each collecting period a 0.5 l sample of well-

mixed water and organisms is removed from each pool.

Each pool sample reasonably represents the state of the

pool community at the time of collection, including spe-

cies richness, the number of individuals of each species,

and proportions among them.

Natural community data treatment

In Hubbell’s neutral theory, a community is con-

strained to include only the individuals of trophically

similar species that potentially compete for resources.

The rock pool communities meet the criteria implicit in

this definition. Pools are small enough to allow potential

interactions between any two individuals, yet have dis-

crete boundaries that limit interactions to organisms that

occur within a pool. To meet the requirement that species

represent a single trophic level, we categorized the spe-

cies into trophic groups and analyzed each group sepa-

rately. Therefore, for our analysis we define an observed

community to be the set of species in a particular trophic

group, found in a single pool.

To determine which trophic groups are represented in

the study system, and to assign each species to a specific

group, we used standard texts (Pennak 1989, Thorp and

Covich 2001) that describe the trophic characteristics of

the families and genera present in the pools. We also used

observations on the ecology and behavior of individual

species (unpublished). Preliminary analysis showed that

detritivores (33 species) have, on average, the highest

population densities of the three trophic groups, followed

by algal-filterers (9 species) and predators (22 species).

To maximize statistical power, we limit our analysis of

species distributions to detritivores. To determine the ef-

fects of predator density on species richness, we analyzed

both the detritivore and algal-filterer trophic groups.

Model parameterization: Hubbell’s neutral

metacommunity algorithm

We treat the 49-pool observed system as a metacom-

munity (Mouquet et al. 2001). In Hubbell’s model, the

species richness and proportions of a neutral metacommu-

nity are a function of two parameters, the fundamental

biodiversity number, θ, and the maximum metacommu-

nity size (number of individuals), J�. We estimate θ and

J� using a three-step process. In step 1, we calculate the

average size of the observed metacommunity, and use this

as a first approximation of J�. We refer to this first ap-

proximation as J
�

�. To calculate J
�

�, we estimate the to-

tal number of individual organisms in each of the 49 pools

during each collection period by multiplying the number

of individuals in a 0.5 l sample by two and then multiply-

ing the result by the pool volume in liters. Then, for each

collection period, we calculate a metacommunity size as

the sum of the number of individuals across all pools. We

calculate J
�

� as the average size of the metacommunity

over all collection periods.

In step 2, we use a log-maximum likelihood equation

(MLE), developed for multinomially distributed data

(Rice 1995), to find the best estimate of θ for a neutral

metacommunity of size J
�

�. The MLE function com-

pares the logarithms of the ranked values of two distribu-

tions. Here, we compare the ranked species proportions of

the observed metacommunity with those of simulated

neutral metacommunities of identical size. Following

Hubbell (2001) we use only species above the median

abundance in the observed metacommunity to estimate θ
as their abundance estimates are less likely to suffer from

sample size effects.

The log-likelihood of a given value of θ is:

(1)l n x x pi i i

i

s

i

s

( ) log ! log ! log ( )θ θ= − +
==
∑∑
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where x� is the abundance (number of individuals) repre-

sented by the species in rank i in the observed system,

p�(θ) is the proportion of rank i in a simulated metacom-

munity with a given θ, n is the size of the observed meta-

community, and S is the number of species. The result of

the MLE calculation is a single value that represents how

much the observed and simulated distributions deviate

from one another. A perfect match yields a maximum

MLE value of zero. To determine the best estimate of θ,

we calculate a separate value of MLE for a series of simu-

lated metacommunities, which differ in θ but not in size,

until the maximum MLE value is attained.

In step 3, we compare the number of species, S, in the

simulated metacommunity to the number in the observed

metacommunity. If the values of S differ, we tune the

value of θ until S is the same for both observed and simu-

lated metacommunities. To do this, we calculate the

maximum number of species, S���(J�,θ), generated for a

simulated metacommunity of size J� = J
�

� and with θ set

to the estimate calculated in step 2. The equation for

S���(J�,θ, is (Hubbell 2001):

.

Using the value of θ estimated in step 2, and beginning

with J� set equal to the value of J
�

� estimated in step 1,

we tune the value of J� up or down until S���(J�,θ) is

equal to the number of species observed in the natural sys-

tem. We repeat the above three-step process for each tro-

phic group.

Once we establish values for θ and J�, we construct a

neutral metacommunity using the algorithm described by

Hubbell. We then calculate the distribution of species pro-

portions expected for the simulated metacommunity and

used it to construct the simulated communities. Hubbell’s

metacommunity algorithm begins with a single individual

of a single species (metacommunity size j = 1, metacom-

munity richness S = 1). New individuals are added to the

metacommunity until the maximum size, J� , is attained.

As each individual is added, it is assigned a species iden-

tity. With probability θ/(θ + j –1), an individual is as-

signed to be a new (previously unrecorded) species,

where j is the current number of individuals in the meta-

community. With probability 1– [θ/(θ + j –1)], the indi-

vidual is randomly assigned to a pre-existing species. In

the latter case, the probability of being assigned to a par-

ticular species, i, is equal to that species’ current propor-

tion of the metacommunity, P�. This process is continued

until all J� individuals have been added and assigned to a

species. To generate a statistical distribution for the neu-

tral metacommunity species proportions for the estab-

lished value of θ, we constructed 1000 independent meta-

communities using the above approach.

Hubbell’s neutral community algorithm

We construct a separate simulated community for

each pool sample of pools #9, #12, and #29. We first set

the size of each simulated community equal to the number

of individuals found in a respective sample, and then use

Hubbell’s neutral community algorithm to generate the

relative proportion of each species. To generate the initial

species proportions of each simulated community (colo-

nization), we select individuals at random from the pre-

viously established neutral metacommunity, constructed

as described above. The probability of an individual in a

community being assigned to a particular species, i, of the

metacommunity is equal to its metacommunity propor-

tion, P�. The colonization process is intended to mimic the

random immigration of individuals from a metacommu-

nity to a community, with no dispersal limitation.

Once we establish each neutral community, we simu-

late random birth, death, and migration, using the commu-

nity dynamics algorithm described by Hubbell (2001).

This algorithm has four parameters: 1) community size, J,

2) the per capita probability of migration, m, 3) the distur-

bance level, D, which is the fraction (percent) of the com-

munity that is replaced each generation, and 4) the

number of generations. For each simulated community,

we set J equal to the size of its corresponding pool sample.

Lacking data on the per generation rate of disturbance, we

conservatively estimate the value of D at 10% per genera-

tion. In our simulations, J and D do not change over time.

As a result of constant J, the dynamics are zero-sum: be-

fore an individual can migrate into a community, or be

born there, a current member of the community must first

leave or die.

To simulate the processes of birth, death, and immi-

gration, we randomly change the species identity of com-

munity members to species chosen from either the com-

munity or metacommunity. Following Hubbell, in each

generation D × J individuals are randomly chosen from

the community for replacement. With probability m, an

individual is replaced by an individual of a species drawn

at random from the metacommunity. With probability 1 –

m, it is replaced by an individual from a species drawn at

random from within the community. If the replacement

comes from the metacommunity, the probability that a

particular species, i, is selected is equal to its metacom-

munity proportion,. If the replacement comes from the

community, the probability that a particular species is se-

lected is equal to its proportion of the community. A gen-

S J
j

m

j

Jm

max( , )θ θ
θ

=
+ +=

∑ 1
1
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eration ends when the identity of all of the D × J individu-

als has been reassigned.

Estimating migration probability

In Hubbell’s model, the number of species in a com-

munity, and the proportion of the community represented

by each species, depend on four parameters: 1) the com-

munity size (J, number of individuals), 2) the number of

species in the metacommunity, S, 3) the proportions of

each species in the metacommunity, P�, and 4) the prob-

ability of migration, m, between community and meta-

community. We set the value of J to the size of each sam-

ple, and established values for S and P�as described above

for metacommunity construction. This approach leaves

only one parameter, m, left to estimate.

The value of m determines the species richness and

distribution of species relative proportions in a simulated

community. Hubbell (2001) suggests using a MLE ap-

proach and species community abundances to determine

the value of m that best characterizes a particular commu-

nity. However, we found that with the small number of

species found in the communities, the MLE does not con-

verge on a single value of m corresponding to a particular

species distribution. We therefore adopted a different ap-

proach. To find the value of m that best fits the observed

species patterns of each pool we do not rely on a single

measure of community structure but instead compare the

observed and simulated communities for both richness

and species proportions. We calculate the predicted spe-

cies richness and relative proportions of simulated com-

munities using Hubbell’s community dynamics algo-

rithm. Each pool sample contains a specific number of

individuals, J and species, S. Because we have multiple

samples for each pool, we can plot a J-S distribution for

each pool (one value of richness for each sample). We

compare the distribution of species richness in the sam-

ples to those of their corresponding simulated communi-

ties using a Wilcoxson matched pairs test. Each pool sam-

ple and simulated community also generates a

distribution of ranked species proportions. For each pool,

we compare the average proportion represented by each

rank in the samples to that of the simulated communities,

using a Chi-square test. To aid our ability to distinguish

the species patterns generated by each simulated commu-

nity we chose migration probabilities that span four or-

ders of magnitude: 1.0, 0.10, 0.01, and 0.001.

We combined the results of the Wilcoxson and Chi-

square tests to determine the value of the migration pa-

rameter, m, that best characterizes three pools: #9, #12,

and #29. The best estimate of m is the value that yields no

significant difference (P > 0.05) between observed and

simulated communities for both species richness and spe-

cies relative proportions. Thus, when both test statistics

are not significant for a given value of m, we consider the

tests to have been successful in estimating the value of m

for that community. We consider the assignment of m to

have failed for a particular community if the P-value of

both tests is not > 0.05 for any of the four values of m

tested, or if more than one value of m yields a non-signifi-

cant result for both tests.

Community dynamics: coefficient of variation in rank

proportions

As a measure of how well neutral models reproduce

the variability of the observed communities we examine

the variation in species proportions within each pool. To

measure this variation, we use the coefficient of variation,

CV, in the fraction of the community represented by each

rank, expressed as a percent: (SD/mean × 100, where SD

is the standard deviation. We use the simulated commu-

nity distributions that represent the previously established

estimates of m for each sample to compare the CV in spe-

cies proportions between observed and simulated com-

munities. If an estimate of m is not possible, we compare

the observed CV to that of the simulated communities for

each value of m. The variability of the proportion of the

community represented by each rank is a measure of the

stability of the relative abundance distribution.

Effect of predators on prey species distributions

As a test of the importance of niche-differences for

species distributions, we analyzed the effect of predators

on prey communities for all 49 pools. High densities of

predators may alter the richness of prey communities,

such as by affecting the intensity or outcome of competi-

tion (Hairston et al. 1960, Paine 1974, Morin 1983). With

respect to neutral models, the presence of predators could

influence the estimate of two parameters: community mi-

gration probability, m, and metacommunity species diver-

sity, θ. Therefore, we examined the effect of predator den-

sity on each of these parameters.

Predators vary in density among the pools from year

to year. In total, they are present in 52% of the samples.

When present in a sample, predators average about 10%

of the total number of individuals. To assess the impact of

predators on prey species, we first need to calculate the

probability of not detecting predators in a pool when they

are present. The probability of observing c or fewer indi-

viduals of a species in a sample of size n taken from a

community of size N, is

�
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(2)

where a� is the abundance of species i in a community and

x is the observed number of individuals of species i

(Gotelli and Graves 1996). For a given a�, the probability

P(1) of observing at least one individual of species i (or

any predator, in our case) is 1–P, with c set to zero in

equation (2). In this case, equation (2) reduces to:

(3)

In principle, any sample will fail to capture a predator if

predator density lies below some minimum detectable

density. To discover what that minimum density is, we

ask: if the fraction of a community represented by preda-

tors is F, what is the minimum value of F needed for there

to be a 95% chance of capturing at least one predator in a

sample (P(1) = 0.95)? We denote this minimum value of

F as F*.

The probability of detecting a predator is proportional

to the sample size; larger samples can detect predators at

lower predator densities. The number of organisms in

samples that lacked predators range from a single individ-

ual to a maximum of 25,317 individuals (mean 846.4).

We estimated the value of F* for one of the smallest pool

samples, which contained only 11 individuals. Using this

particular sample provides a very conservative estimate of

F* because 92.6% of the samples that lack predators are

larger than 11 individuals. To calculate F*, we set N in

equation (3) to 2nV, where V is the volume of the pool in

liters, and set n to the number of individuals in the sample.

Then, by varying a� until P(1) is at least 0.95, we are able

to estimate the value of F*. For a sample size of 11, the

value of F* needed to generate a P(1)≥0.95 is 21.5%. We

therefore define samples that lack predators as low-preda-

tor-density (LPD) samples, representing communities in

which predators account for ≤ 21.5% of the total number

of individuals. High-predator-density (HPD) samples are

defined as containing > 21.5% predators.

Effect of predator density on estimates of migration

probability and θ

To examine the effect of predator density on the esti-

mate of θ for the 49 pool metacommunity, we calculate

separate θ values for the HPD samples and the LPD sam-

ples. To examine the effect of predators on the value of m

for pools #9, #12, and #29, we follow the same approach

we describe above for determining m, except that here we

perform separate analyses for HPD and LPD samples.

Again, we combined the results of the Chi-square test and

Wilcoxson matched-pairs test to determine the best esti-

mate of migration probability for each pool.

Results

Community species distributions and migration

probabilities

We compared the observed detritivore communities

to simulated communities representing four different val-

ues of migration probability m (1.00, 0.10, 0.01, 0.001).

Different values of m yield different model predictions for

the number of species in a community and species relative

proportions. Table 1 and Figure 1 show results for the

three representative pools (#9, #12, and #29). For pools

#12 and #29, the migration probability determined by

comparing the results of the Chi-square and Wilcoxson

tests is m = 0.01. However, our paired-test approach was

unsuccessful in assigning a migration probability for pool

#9 because the observed distribution of species relative

proportions are significantly different from those of all of

the simulated communities that correspond to this pool.

Metacommunity species distributions

Hubbell’s neutral model performs better at predicting

the mean species relative proportions of the observed

metacommunity (Figure 2), although the residual vari-

ation is high. Based on the MLE analysis on all of the sam-

ples, the value of θ estimated for the detritivore metacom-

munity is 1.9. The corresponding neutral metacommunity

distribution provides a good fit to the mean empirical val-

ues of the top 62 percent of the metacommunity (R
�

=

0.9528), and the curves for the observed and simulated

distributions are statistically indistinguishable (Figure 2).

However, the mean values of the neutral distribution do

not fit the mean observed distributions of rare species.

Over a third (38 percent) of the species with low meta-

community proportions (i.e., < 0.01%) were more abun-

dant than the predicted distribution. This difference,

though consistent, was not statistically significant due to

the high variation in observed and predicted species pro-

portions.

Community dynamics: variation in rank proportions

The ranked species proportions tend to be much more

variable in the observed communities compared to simu-

lated communities of identical size. To illustrate this, we

plot the curves that represent the values of m that most
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closely match the observed mean species relative propor-

tions along side the observed values (Figure 3). We find

that the proportion of the community represented by each

rank in the observed communities is generally much more

variable than predicted by Hubbell’s model. In the simu-

lated communities, the CV of community proportion of

all but the rarest species tends to increase linearly in pro-

portion to rank. In two of the observed communities (#9

and #29), the CV increases exponentially with rank. In all

cases rare species are much more variable in their com-

munity proportion than predicted by neutral models.

There is closer agreement between observed and simu-

lated communities for Pool #12 in which the simulated

community with m = 0.01 shows good agreement in CV

for some but not all species ranks.

Effects of predator-prey interactions

The influence of predators on prey species richness

differed for the two prey groups. High predator densities

(HPD) significantly increase mean species richness for

detritivores from 2.26 to 4.25 (Wilcoxon matched pairs

test, p < 0.0001), but the effect on algal-filterers is not sig-

nificant (from 1.26 to 1.93; p = 0.4631). Predator density

also influenced the species composition of the detritivore

communities. Six detritivore species were found only in

HPD samples, while two species occur only in LPD sam-

ples. In each case, the organisms limited to HPD or LPD

samples represent very rare species, with average meta-

community proportions between 7 × 10
��

and 7 × 10
��

.

Predator density influences the estimate of the meta-

community biodiversity parameter, θ for the detritivores.

The value of θ estimated for the 49-pool metacommunity

is 1.9 when the samples are analyzed as a single set. When

HPD samples are analyzed separately, θ = 2.6, reflecting

the higher average richness and species proportions.

When only LPD samples are considered, θ = 1.28. We

found no statistical difference in the sizes (total individu-

als) of detritivore communities between LPD (mean size

= 558.7) and HPD (mean size = 430.4) samples (Wilcox-

son matched pairs test, p = 0.1630). Thus, we could not

find evidence that the differences in species richness ob-

served between samples with low and high predator den-

sities were caused by a difference in the sizes of the sam-

ples.

For one of the three pools examined, differences in

predator density affected the estimate for the migration

parameter. The estimate of m in pool #12 is 0.01 when all

samples are considered, but it is 0.001 when the LPD sam-

ples are analyzed separately (Table 2). However, we

could not tell with certainty whether variation in predator

density affected the estimates of m for pools #9 and #29

using the paired-test approach. The P-values for the Chi-

square tests on LPD samples for Pool #29 suggest that this

pool is characterized by lower values of m (i.e., 0.010 and

0.001) whereas the same tests for pool #9 suggest that the

value of m is lower in the LPD samples (the P-value of the
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LPD samples is nonsignificant only for the lowest level of

m). However, the evidence for how m is affected by preda-

tors in pools #9 and #29 is clearly equivocal.

Differences between the simulated and observed de-

tritivore communities in species richness and evenness

are less pronounced when predator densities are high

(Figure 4). When predator densities are low, the numeri-

cal dominance of the most abundant species in the detri-

tivore communities increased while the number of species

decreased dramatically. In addition to increased species

richness, the proportions of detritivore species in HPD

samples were more evenly distributed (Figure 4). The

proportion of the community represented by the lower

ranks (less common species) was significantly less in

LPD samples (Chi-square comparison of HPD and LPD

samples, P < 0.00001) for each of the three pools (#9, #12,

and #29).

Discussion

We tested the ability of Hubbell’s zero-sum neutral

model to predict the distribution of species proportions in

a metacommunity of 49 pools, and in the communities of

three individual pools. Our results did not agree with the

predictions of Hubbell’s neutral models. Specifically, lev-

els of variation in species abundances are generally higher

than predicted. The observed variation influenced esti-

mates of the migration parameter m and the biodiversity

parameter, θ. The effect of variation on the agreement be-

tween simulated and observed communities is most ap-

parent in Figure 3, which shows that the CV in the fraction

of a community represented by each species rank often
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deviates strongly from the variation predicted by neutral

models.

At the community scale, the neutral theory proposes

that variation in species proportions and species richness

arises through variation in community size and dispersal

limitation. This proposal is based in large part on the as-

sumption that species richness is controlled by resource

levels. By contrast, the niche-assembly view considers

species richness to depend on additional factors, such as

disturbance, fluctuating environments, and predator-prey

interactions (Cornell and Lawton 1992, Chase 2005). In

our study, the richness and evenness of detritivore com-

munities are greater in samples with high predator densi-

ties. This indicates that natural variation in predator den-

sities, and the proportion of the metacommunity that

supports high predator densities, can influence the com-

munity and metacommunity species patterns of prey. Pre-

vious studies indicate that variation in abiotic factors such

as salinity also influence community patterns in our study

system (Therriault and Kolasa 1999, Romanuk and Ko-

lasa 2002). Thus there is evidence that several determinis-

tic processes influence the distribution and abundance of

species in our system. This is not to say that random proc-

esses such as dispersal do not contribute to the observed

community patterns. But the neutral dynamics of Hub-

bell’s models do not adequately predict the observed level

of variation. In our system, the probability of successful

migration depends on the local conditions within each

pool. Local conditions can fluctuate in both biotic (i.e.,

predator density) and abiotic (water chemistry, pool vol-

ume) factors, causing the probability of successful migra-

tion to change over time. This variation in the effective

migration rate can override or obscure the influence of

random processes. But again this depends on local condi-

tions. An interesting potential side effect of high predator

densities is that by reducing the intensity of competition

of their prey, predators may actually allow random proc-

esses such as dispersal to play a stronger role in prey com-

munity structure. The closer fit of simulated community

proportions with those of observed community propor-

tions in HPD samples (Figure 4) supports this hypothesis.

The level of variation of the simulated communities is

governed by the rate of species turnover, which is deter-

mined by the disturbance parameter, D. We lack data on

the rate of turnover, and therefore used a conservative es-

timate of D=10 percent. Using a higher level of distur-

bance might improve the fit between the observed and

simulated communities in CV. However, it would also in-

crease the variation in species relative proportions, de-

grading our already tenuous ability to assign a specific

value of m to each community. This issue underscores the

problem of parameterizing neutral models with empirical

data when communities contain small numbers of species.

The pools in our study average less than 7 detritivore spe-

cies, and similar numbers are typical of community stud-

ies. Better techniques for estimating m are needed to

evaluate the ability of neutral models to predict species

patterns.

At the metacommunity scale, the variation in species

proportions is quite high. The standard errors for the ob-

served metacommunity indicate that the level of statisti-

cal independence among the samples is higher than pre-

dicted. The observed level of variation at the

metacommunity is at odds with the assumption of neutral

theory that metacommunities are in dynamic equilibrium,

and are characterized by slowly changing species abun-

dances (Hubbell 2001, McGill 2003, Chave 2004). In ad-

dition, we see evidence that Hubbell’s model does not

adequately describe the mean relative abundance of rare

species: 38% of the observed metacommunity is more

abundant than predicted by Hubbell’s neutral model (Fig-

ure 2). The consistent lack of a decline in the metacom-

munity proportions of rare species suggests that the pat-

tern is biologically meaningful. For example, spatial

variation across the landscape in the biotic and abiotic

conditions of the pools may enhance opportunities for less

competitive species, increasing their abundance at the

metacommunity scale over that expected by neutral the-

ory. On the other hand, the higher observed proportions

of rare species may also reflect sampling error associated

with the difficulty of detecting species of low abundance.

The probability of detecting the individuals of a species

in a sample increases with species abundance, creating a

positive bias in the mean species proportion of multiple

samples. Thus several factors may contribute to the ob-

served pattern of the rarest species.

Our results suggest that the community assembly

processes described by Hubbell’s algorithms are insuffi-

cient to account for the assembly process in the natural

system we studied. For example, the greater than ex-

pected variability of rare species is compatible with pre-

dictions of hierarchy theory (Waltho and Kolasa 1994,

Kolasa and Li 2003). There are of course other modeling

approaches based on neutral theory (e.g., Caswell 1976,

Bell 2000). By focusing specifically on Hubbell’s ap-

proach, our analysis does not evaluate the usefulness of

all neutral models. It appears that the primary reason for

the inadequacy of Hubbell’s approach is that the prob-

ability of survival is not constant as required by his mod-

els, but depends on species characteristics and the biotic

and abiotic conditions of each pool. We show that differ-

ences in survival can influence estimates of the migration
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probability of the pools and estimates of the fundamental

diversity parameter, θ. Our analysis of predator effects

suggest that the procedure necessary for assigning the sur-

vival probability of species is more complex than a simple

random assignment.
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