Turlough M. Finan, Ph.D.

Telephone: (905) 525-9140

Office: LSB-537 Ext 22932

Lab: LSB-505 Ext 27880

Email: finan@mcmaster.ca

Interests & Activities

Molecular genetic studies on symbiotic N2-fixation and phosphate metabolism; plasmid genetics

Publications
  • diCenzo G., Zamani M., Milunovic B, and T. M. Finan. 2016. Genomic resources for identification of the minimal N2-fixing symbiotic genome. Environmental Microbiology 2016 Jan 15. In press. Abstract
  • Chen S., White C., diCenzo G., Zhang Y., Stogios P., Savchenko A., and Finan T. L-Hydroxyproline and D-Proline Catabolism in Sinorhizobium meliloti. J Bacteriol. 198:1171-81.
    Abstract
  • Fei F, diCenzo G.C., Bowdish D, McCarry B, and T.M Finan. 2016. Effects of synthetic large-scale genome reduction on metabolism and metabolic preferences in a nutritionally complex environment. Metabolomics 12(2): 1-14
    Abstract
  • diCenzo G. C. Zamani M, Cowie A., and T. M. Finan. 2015. Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype. Microbiology 161(12):2341-51.
    Abstract
  • diCenzo G. C. and T. M. Finan 2015. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Molecular Genetics and Genomics 290:1345-56.
    Abstract
  • Jackson,T. A., Vlaar, S., Nguyen, N., Leppard G. G., and T. M. Finan 2015. Effects of Bioavailable Heavy Metal Species, Arsenic, and Acid Drainage from Mine Tailings on a Microbial Community Sampled Along a Pollution Gradient in a Freshwater Ecosystem.
    Geomicrobiology Journal 32:724-750
    Abstract
  • diCenzo G., MacLean, A. M., Milunovic B, and T. M. Finan 2014. Examination of Prokaryotic Multipartite Genome Evolution Through Experimental Genome Reduction. PLoS Genetics 10(10):e1004742.
    Abstract
  • Milunovic B, diCenzo G, Morton R, and T. M. Finan. 2014. Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol.196:811-24. (Primarily NSERC funded – Genome Canada/ORDCF also acknowledged)
    Abstract
  • diCenzo G., Milunovic B, Cheng J, Finan T. M. 2013. tRNAarg and engA are essential genes on the 1.7 –Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestoral strain. J Bacteriol.195:202-12 Abstract
  • White CE, Gavina JM, Morton R, Britz-McKibbin P, Finan TM. 2012.Control of hydroxyproline catabolism in Sinorhizobium meliloti. Mol Microbiol. 85:1133-47. Abstract
  • Zhang Y., Poole P., Aono, T., and T. M. Finan. 2012. NAD(P)+-Malic Enzyme mutants of Sinorhizobium sp. NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities. Applied and Environ. Microbiol. 78(8):2803-12. Abstract
  • Cheng J, Poduska B, Morton RA, Finan TM. 2011. An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations. J Bacteriol. 193: 4405-4416. Abstract
  • MacLean, A. M., Haerty, W.C., Golding, G.B., and T.M. Finan. 2011. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology. 157:2522-2533. Abstract
  • Mulley G, Lopez-Gomez M, Zhang Y, Terpolilli J, Prell J, Finan T, Poole P. 2010. Pyruvate is synthesized by two pathways in pea bacteroids with different efficiencies for nitrogen fixation.J Bacteriol. 192:4944-53. Abstract
  • Gavina J. M., White C. E, Finan T. M, & P. Britz-McKibbin. 2010. Determination of 4-hydroxyproline-2-epimerase activity by capillary electrophoresis: A stereoselective platform for inhibitor screening of amino acid isomerases. Electrophoresis. 31:2831-7. Abstract
  • Dicenzo G, Milunovic B, Cheng J, Finan TM (2012) tRNAArg and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium melilotiand were translocated together from the chromosome in an ancestral strain. J. Bacteriol. In press. Abstract
  • White CE, Gavina JM, Morton R, Britz-McKibbin P,Finan TM. (2012) Control of hydroxyproline catabolism in Sinorhizobium meliloti. Mol. Microbiol. 85:1133-47.Abstract
  • Zhang Y, Aono T, Poole P,  (2012) NAD(P)+ -malic enzyme mutants of Sinorhizobium sp. strain NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities. Appl. Environ. Microbiol. 78:2803-12. Abstract
  • Cheng J, Poduska B, Morton RA, Finan TM. (2011) An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations. J. Bacteriol. 193:4405-16.Abstract
  • Maclean AM, Haerty W, Golding GB, Finan TM (2011) The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti Microbiology. 157:2522-33.Abstract
  • Gavina JM, White CE, Finan TM , Britz-McKibbin P. (2010) Determination of 4-hydroxyproline-2-epimerase activity by capillary electrophoresis: A stereoselective platform for inhibitor screening of amino acid isomerases. Electrophoresis. 31:2831-7. Abstract
  • Zavaleta-Pastor, M, Sohlenkamp, C, Gao, JL, Guan, Z, Zaheer, R, Finan, T.M, Raetz, C.R, López-Lara. I.M, and O. Geiger. 2010.  Sinorhizobium melilotiphospholipase C required for lipid remodeling during phosphorus limitation.  Proc. Natl. Acad. Sci.  U S A. 107:302-7. Abstract
  • Hong Guo S., Sun S., Eardly B., Finan T.M., and J. Xu.  2009.  Genome Variation in the Symbiotic Nitrogen-Fixing Bacterium Sinorhizobium meliloti.  Genome 52:862-875. Abstract
  • Saborido L., Zaheer, R., Finan, T.M. and B.E. McCarry. 2009.  Shotgun Lipidomics Study of a Putative Lysophosphatidic Acyl Transferase (PlsC) inSinorhizobium meliloti   J. of Chromatography B.  Analyt Technol Biomed Life Sci. 877:2873-82. Abstract
  • MacLean A., P., White C. E., Fowler, J. and T.M. Finan. 2009.  Identification of a Hydroxyproline transport system in the legume endosymbiontSinorhizobium meliloti.  Molecular Plant-Microbe Interactions.  22:1116-1127. Abstract
  • Zaheer, R ., Morton R.M., Proudfoot M., Yakunin A., and T. M. Finan.  2009. Genetic and biochemical properties of an alkaline phosphatase PhoX-family protein found in many bacteria.   Environmental Microbiology.  11:1572-1587.  Abstract
  • Saborido L., Zaheer, R., Finan, T.M. and B.E. McCarry. 2009.  A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics. J. of Lipid Research.  50:1120-1132 Abstract
  • White C. E. and T. M. Finan. 2009. Quorum quenching in Agrobacterium tumefaciens: chance or necessity?   J. Bacteriol. 191:1123-1125. Abstract
  • Saborido L., Zaheer, R., Finan, T.M. and B.E. McCarry. 2009. Cyclopropane Fatty Acyl Synthase in Sinorhizobium meliloti.  Microbiology  155: 373 – 385.Abstract
  • MacLean A., P., Anstey M. I. and T.M. Finan. 2008. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti. J. Bacteriol. 190: 1237-1246. Abstract
  • MacLean A.M., Finan T. M., and Sadowsky M. J. 2007. Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol. 144:615-22.Abstract
  • Mitsch, M., Cowie, A., and T. M. Finan 2007.  Malic Enzyme Cofactor and Domain Requirements for Symbiotic N2-fixation by Sinorhizobium meliloti.  J. Bacteriol. 189:160-168. Abstract
  • Cheng J., Sibley, C.D., Zaheer, R., and T. M. Finan. 2007. ASinorhizobium meliloti minE mutant has an altered  morphology and exhibits defects in the legume symbiosis. Microbiology. 153:375-87. Abstract
  • Mauchline T., Fowler, J., East, A., Sartor, A., Zaheer, R., Hosie, A., Poole, P., and T. M. Finan. 2006.  Mapping the Sinorhizobium meliloti 1021 solute binding protein-dependent transportome.     Proc. Natl. Acad. Sci. USA. 103:17933-8. Abstract
  • Cowie A, Cheng. J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, and Finan T. M.  2006.  An Integrated Approach to Functional Genomics: Construction of a Novel Reporter Gene Fusion Library ofSinorhizobium meliloti.  Applied and Environ. Microbiol. 72: 7156-7167. Abstract;
  • MacLean A., MacPherson, G., Aneja, P., and T.M. Finan. 2006. Characterization of the β-ketoadipate pathway in Sinorhizobium meliloti.Applied and Environ. Microbiol. 72:5403-5413. Abstract;
  • Yuan Z.C., Zaheer R., Morton R., and T.M. Finan.  2006. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria.  Nucleic Acids Res. 34:2686-2697. Abstract;
  • Sibley C. D., MacLellan S. R., and T. M. Finan. 2006. The Sinorhizobium meliloti chromosomal origin of replication. Microbiology 152: 443-455.Abstract;
  • MacLellan S, L. MacLean A., Zaheer, R., and T.M. Finan.  2006.   Promoter prediction and structure in the alpha-proteobacteria.  Microbiology 152:1751-63. Abstract;
  • MacLellan S, L. MacLean A., Zaheer, R., and T.M. Finan.  2006.  Identification of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons.  Molecular Microbiology 59:1559-1575. Abstract
  • Yuan ZC, Zaheer R, Finan TM.  2006. Regulation and properties of PstSCAB, a high affinity, high velocity, phosphate transport system ofSinorhizobium meliloti. J. Bacteriol. 188:1089-1102. Abstract
  • Guo H, Sun S, Finan TM, Xu J. 2005  Novel DNA sequences from natural strains of the nitrogen-fixing symbiotic bacterium Sinorhizobium meliloti. Applied and Environ. Microbiol. 71:7130-8. Abstract
  • Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H. 2005.  Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187:6991-7. Abstract
  • Yuan, Z., Zaheer,R., and T M. Finan 2005. Phosphate limitation induces catalase expression in   Sinorhizobium meliloti, Pseudomonas aeruginosaandAgrobacterium tumefaciens.             Molecular Microbiology 58:877-94. Abstract
  • MacLellan S, L. Smallbone, C. Sibley and T.M. Finan.  2005.  The expression of a novel antisense gene mediates incompatibility within the large repABC-family of α-proteobacterial plasmids.  Molecular Microbiology 55:611-23. Abstract;
  • Finan T.M., S. Weidner, K. Wong, J. Buhrmester, P. Chain, F.J. Vorholter, I. Hernandez-Lucas, A. Becker, A. Cowie, J. Gouzy, B. Golding, and A. Puhler.  2001.  The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A.  98:  9889-9894. Abstract;
  • Galibert F., T.M. Finan, S.R. Long, A. Puhler, P. Abola, F. Ampe, F. Barloy-Hubler, M.J. Barnett, A. Becker, P. Boistard, G. Bothe, M. Boutry, L. Bowser, J. Buhrmester,E. Cadieu, D. Capela, P. Chain, A. Cowie, R.W. Davis, S. Dreano, N.A. Federspiel, R.F.Fisher, S. Gloux, T. Godrie, A. Goffeau, B. Golding, J. Gouzy, M. Gurjal, I. Hernandez-Lucas, A. Hong, L. Huizar, R.W. Hyman, T. Jones, D. Kahn, M.L. Kahn,  S. Kalman, D.H. Keating, E. Kiss, C. Komp, V. Lelaure, D. Masuy, C. Palm, M.C. Peck, T.M. Pohl, D. Portetelle, B. Purnelle, U. Ramsperger, R. Surzycki, P. Thebault, M. Vandenbol, F.J. Vorholter, S. Weidner, D.H. Wells, K. Wong, K.C. and Yeh, J. Batut  2001.  The composite genome of the legume symbiontSinorhizobium meliloti.   Science.  293: 668-72. Abstract
  • Allaway, D., N.A. Schofield, M.E. Leonard, L. Gilardoni, T.M. Finan, P.S. Poole. 2001. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ Microbiol. 6:397-406.Abstract
  • Galibert F., T.M. Finan, S.R. Long, A. Puhler, P. Abola, F. Ampe, F. Barloy-Hubler, M.J. Barnett, A. Becker, P. Boistard, G. Bothe, M. Boutry, L. Bowser, J. Buhrmester, E. Cadieu, D. Capela, P. Chain, A. Cowie, R.W. Davis, S. Dreano, N.A. Federspiel, R.F.Fisher, S. Gloux, T. Godrie, A. Goffeau, B. Golding, J. Gouzy, M. Gurjal, I. Hernandez-Lucas, A. Hong, L. Huizar, R.W. Hyman, T. Jones, D. Kahn, M.L. Kahn, S. Kalman, D.H. Keating, E. Kiss, C. Komp, V. Lelaure, D. Masuy, C. Palm, M.C. Peck, T.M. Pohl, D. Portetelle, B. Purnelle, U. Ramsperger, R. Surzycki, P. Thebault, M. Vandenbol, F.J. Vorholter, S. Weidner, D.H. Wells, K. Wong, K.C. Yeh, J. Batut 2001. The composite genome of the legume symbiontSinorhizobium meliloti. Science. 293:668-72. Abstract
  • Dunn M.F., G. Ariza, T.M. Finan. 2001. Cloning and characterization of the pyruvate carboxylase from Sinorhizobium meliloti rm. 1021. Archiv. Microbiol.176: 355-363. Abstract
  • Finan T.M., S. Weidner, K. Wong, J. Buhrmester, P. Chain, F.J. Vorholter, I. Hernandez-Lucas, A. Becker, A. Cowie, J. Gouzy, B. Golding, A. Puhler. 2001. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A.: 98: 9889-9894.Abstract
  • Reichheld, S. and T.M. Finan. 2001. Vitamins. In Encyclopedia of Genetics. Edited by S. Brenner and J. Miller. Academic Press
  • Chain PS, Hernandez-Lucas I, Golding B, Finan T.M. 2000. oriT-directed cloning of defined large regions from bacterial genomes: identification of theSinorhizobium meliloti pExo megaplasmid replicator region. J Bacteriol. 182:5486-94 Abstract
  • Voegele RT, Mitsch MJ, Finan TM. Characterization of two members of a novel malic enzyme class. Biochim Biophys Acta. 1999 Jul 13;1432(2):275-85.Abstract
  • Geiger O, Rohrs V, Weissenmayer B, Finan TM, Thomas-Oates JE. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol. 1999 Apr;32(1):63-73. Abstract
  • Bardin, S., Voegle, R., and T.M. Finan. 1998. Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti, identification of a pit-like gene. J. Bacteriol. 180: 4219-4226. Abstract
  • Mitsch, M., Voegle, R., Cowie, A., Osteras, M., and T.M. Finan. 1998. Chimeric structure of NAD(P)+ and NADP+-dependent malic enzymes from Rhizobium meliloti. J. Biol. Chem. 273: 9330-9336. Abstract
  • Bardin, S. and T.M. Finan. 1998. Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti. Genetics. 148: 1689-1700. Abstract
  • Voegele, R., S. Bardin and T.M. Finan. 1997. Characterization of the Rhizobium (Sinorhizobium) melilolti high and low affinity phosphate uptake systems.J. Bacteriol. 179: 7226-7232. Abstract
  • Osteras, M., S. O’Brien and T.M. Finan. 1997. Genetic analysis of mutations affecting pckA regulation in Rhizobium (Sinorhizobium) meliloti.Genetics. 147: 1521-1531. Abstract
  • Driscoll, B. T. and T.M. Finan. 1997. Properties of NAD+- and NADP+-dependent Malic enzymes of Rhizobium (Sinorhizobium)meliloti and differential expression of their genes in nitrogen-fixing bacteroids.Microbiology. 143: 489-498. Abstract
  • Osteras, M., B. T. Driscoll and T. M. Finan. 1997. Increased pyruvate orthophosphate dikinase activity effects an alternative gluconeogenic pathway in Rhizobium (Sinorhizobium) meliloti. Microbiology. 143: 1639-1648. Abstract
  • Bardin, S., S. Dan, M. Osteras and T. M. Finan. 1996. A phosphate transport is required for symbiotic nitrogen fixation by Rhizobium meliloti. J. Bacteriol. 178:4540-4547. Abstract
  • Driscoll, B. T. And T. M. Finan. 1996. NADP+-Dependent malic enzyme of Rhizobium meliloti. J. Bacteriol. 178: 2224-2231. Abstract
  • Osteras, M., J. Stanley and T. M. Finan. 1995. Identification of Rhizobium-Specific Intergenic Mosaic Elements within an Essential Two-Component Regulatory System of Rhizobium Species. J. Bacteriol. 177: 5485-5494.Abstract
  • Osteras, M., B. T. Driscoll and T. M. Finan. 1995. Molecular and Expression Analysis of the Rhizobium meliloti Phosphoenolpyruvate Carboxykinase (pckA) Gene. J. Bacteriol. 177: 1452-1460.Abstract
  • Finan, T.M., C. Gough and G. Truchet. 1995. Similarity between the Rhizobium meliloti: fliP gene and pathogenicity-associated genes from animal and plant pathogens. Gene. 152: 67-75. Abstract
Research

Molecular Microbiology: The N2-fixing bacterium Sinorhizobium (Sinorhizobium) meliloti
The bacterium Sinorhizobium meliloti is best known for its ability to form N2-fixing root nodules on leguminous plants.  The genome of this bacterium consists of a typical chromosome (3.6 Mb) and two megaplasmids pSymA (1.35 Mb) and pSymB  (1.68 Mb).  We are employing a molecular genetic approachs to investigate fundamental and applied aspects of the biology of this organism.  We have focussed on genes of unknown function in the context of the three topics described below.

  1. In a soil environment, the growth of many organisms is limited by the amount of available phosphate.  We are studying the response ofSinorhizobium to phosphate limitation.  We have identified over 30 genes whose expression is directly controlled by a key regulatory protein, PhoB.   We are interested in the function of the proteins encoded by these genes and how they are integrated into the cellular response to phosphate limitation.
  2. The energy required to reduce N2 in bacteria within nodules is supplied by the host plant in the form of the TCA cycle intermediates malate and succinate.  In addition, in the soil environment, Sinorhizobium survives through the catabolism of compounds made available from plants.  We are interested in identifying these compounds and how they are metabolized.
  3. To identify functions associated with the pSymA and pSymB megaplasmids, we have developed methods to delete and manipulate large regions from these replicons.