Biology 2L03 Experimental Design in Biology
COURSE OUTLINE, 2018

Professor: Dr. Roger Jacobs
Office Hours: TBD, LSB-429
Office Address: LSB 429 Email: jacobsr@mcmaster.ca

Teaching Assistants: Danielle MacDuff, Lauren Tiller and Katie Perry
Office Hours: By arrangement only, email to request a meeting

Course Coordinator: Alison Cowie. LSB 119. Email: cowieal@mcmaster.ca

Course Related Issues:
ALL STUDENTS taking Bio 2L03 are required to complete the Biosafety course BIOSAFE 1BS0 (listed on MOSAIC). We cannot allow you to complete labs 2,3,4 or 5 in Biology 2L03 unless you have completed this safety course. If you took it for Bio1A03 you do not need to take it again.

Lectures: Tues, Thurs 11:30-12:25pm in HH 217 Labs: Tues, Wed 2:30-6:30 pm in LSB-108

Materials:
Text: There is no required text. Readings will be linked to the course on Avenue https://avenue.mcmaster.ca.
Lecture material related to experimental design can be explored further in two books available in
Thode: Experimental Design for the Life Sciences, GD Ruxton, QH 307.2 .R88 2006
Experimental Design for Biologists DJ Glass, QH 323.5 .G565 2007
Lab manuals will be posted on Avenue.
You must bring a lab coat and goggles to lab each week, you may not work in the lab without proper protection.
You are required to use a hardcover Lab Notebook to record your work. This book will be submitted for assessment. You can use the remaining pages in your “Department of Biology Student Lab Notebook” from Bio1A03, or purchase another.

Course Objectives:
Prepare students for a career that involves scientific research or the critical interpretation of the research of others. Lay a strong foundation and provide essential preparation for a B.Sc. thesis or postgraduate thesis research. Open to students in Level II or III, but enrolment is limited.

Course Description and Format:
The course is centered upon 5 labs, each in a different discipline of biology (ecology, microbiology, plant biology, cell biology, physiology). Each lab will expose students to questions and techniques in different research specializations in Biology, while also highlighting different problems and issues in research that transcend the specializations. Thus students will become proficient in translating observations to a question, progressing from a hypothesis to experimental design (causative and correlative paradigms) and execution, interpretation and communication of results.
Implementation:
• Dr. Jacobs leads all the labs and lectures dealing with experimental design.
• 4 guest lectures introduce specialization-specific orientation to the field and the question.
• 5 labs on a 2 week cycle
• 2 weekly lectures – 1 as lab intro (most weeks) and 1 to explore research design and communication issues

COURSE AND LAB SCHEDULE:
Week 1: Sept 4,6
Course Introduction, TA introductions, expectations etc.

Week 2 and 3: Sept 11-13, 18-20- ECOLOGY
LECTURES: What makes a good question? -What makes a good hypothesis? (brainstorm) -
Benchmark exercise in hypothesis formulation
Sept 11 — Guest Chad Harvey: Ecosystem health and Great Lake marshes
LAB 1: Ecological indicators and ecosystem health.
Focus on observation. Students will examine an issue of biodiversity related to organisms collected from the Hamilton Harbour/Cootes Paradise. Students are challenged to devise ways to describe and assess biodiversity. The objective is to make an observation that can be used to formulate a testable hypothesis.
Assessment: Ecology Data Analysis and 1 page Lay Abstract of work.

Weeks 4, 5: Sept 25-27, Oct 2-4, MICROBIOLOGY
LECTURES: More on hypothesis formulation  -testability by experimentation or by observation (correlation vs causation) -case study of a good research fallacy  -In class exercise TBA -Students will work in small groups (2-3)
Sept 26 – Guest Danielle Sexton: Quorum sensing in bacteria, mechanism, adaptive functions, role in pathogens.
LAB 2: Quorum sensing and agricultural pests
Students will culture a QSS strain of Pseudomonas in the presence of an indicator strain (E. coli pSB401) that fluoresces in the presence of ASL (Homoserinelactone) and in the presence of a competing strain that degrades ASL. The question is “Do ASL degrading cells outcompete quorum sensing cells?” Students must formalize their hypothesis and experimental design before coming to the lab. Time permitting, the experiment can be repeated on potato plants, to test for biological control of a plant pathogen.
Assessment: Lab Book notes, submit a report on the hypothesis you developed, and describe the experimental design, procedure, and interpret the outcome.

Week 6: Oct 8 – 14, MIDTERM RECESS

Weeks 7 and 8: Oct 16-18, Oct 23-25 PLANT BIOLOGY
LECTURES: About experimental design
  -designing meaningful controls, designing for statistical inference
  -In class exercises in assessing experimental design- assignment
  -Visual representation of Data -how to interpret a figure
Oct. 16 – Guest Robin Cameron - Disease Resistance in Plants

**LAB 3:** Disease Resistance in Plants  Observe and measure resistance (R gene-mediated and basal resistance) and disease in Arabidopsis and correlate symptoms with in planta bacterial growth and the expression of defense-associated genes. Students will try to match the plant genotype to the resistance phenotype.

Assessment: -First steps to write a Letter to Nature: Abstract and Results
-how to represent your data

**Weeks 9 and 10: Oct 30-Nov 1, CELL BIOLOGY**

**LAB 4:** Cytoskeletal Regulation of Chromatophore Biology

Students will learn how to isolate living chromatophores from fish scales, and prepare them for assays of chromatophore distribution. They will be presented with a number of reagents that alter the cytoskeleton or alter signal transduction. Students will progress from question to hypothesis to experimental design and execution to data analysis to writing an article.

Assessment: Write a full letter to Nature.
-assignment: interpret a figure

**Weeks 11-12: Nov 13-22 PHYSIOLOGY**

LECTURES: - Nov 13 - Dr. Graham Scott- Autonomic control of the heart
- Bioethics,

**LAB 5:** Autonomic Control of the Frog Heart. In this laboratory you will examine the function of the heart in the frog and mimic the effects of autonomic control by applying adrenaline and acetylcholine directly to the heart. You will also attempt to determine the nature of the adrenergic and cholinergic receptors in the heart by the use of competitive blocking agents.

LECTURES: Article Retraction, Epistemic Rules of Scientists, Post-Normal Science

Marking Scheme:
15%  3 Class Assignments
60%  5 Lab Assignments
25%  Final exam (December take home)

Policy on missed work, extensions, late penalties and missed exams:
If you are absent from the university for a minor medical reason, lasting fewer than 3 days, you may report your absence, once per term, without documentation, using the McMaster Student Absence Form. Absences for a longer duration or for other reasons must be reported to your Faculty/Program office, with documentation, and relief from term work may not necessarily be granted. When using the MSAF, report your absence to Alison Cowie, cowieal@mcmaster.ca. Then contact Alison Cowie immediately (normally within 2 working days) to learn what relief may be granted for the work you have missed. Normally, a missed lab will be completed with your lab-mate’s data and both labs and assignments may be given an extension for submission. Please note that the MSAF may not be used for term work worth 25% or more, nor can it be used for the final examination.
**Academic Integrity:** You are expected to exhibit honesty and use ethical behavior in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity.

Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behavior can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: “Grade of F assigned for academic dishonesty”), and/or suspension or expulsion from the university. It is your responsibility to understand what constitutes academic dishonesty. For information on the various types of academic dishonesty please refer to the Academic Integrity Policy, located at [http://www.mcmaster.ca/academicintegrity](http://www.mcmaster.ca/academicintegrity)

The following illustrates only three forms of academic dishonesty:

- Plagiarism, e.g. the submission of work that is not one’s own or for which other credit has been obtained.
- Improper collaboration in group work.
- Copying or using unauthorized aids in tests and examinations.

**Academic Accommodation of Students with Disabilities:** Students who require academic accommodation must contact Student Accessibility Services (SAS) to make arrangements with a Program Coordinator. Academic accommodations must be arranged for each term of study. Student Accessibility Services can be contacted by phone 905-525-9140, ext. 28652 or e-mail sas@mcmaster.ca. For further information, consult McMaster University’s Policy for Academic Accommodation of Students with Disabilities or the SAS website [https://sas.mcmaster.ca/](https://sas.mcmaster.ca/).

**Academic Accommodation for religious, Indigenous or Spiritual Observances (RISO)**

Students requiring academic accommodation based on religious, indigenous or spiritual observances should follow the procedures set out in the RISO policy. Students requiring a RISO accommodation should submit their request to their Faculty Office normally within 10 working days of the beginning of term in which they anticipate a need for accommodation or to the Registrar’s Office prior to their examinations. Students should also contact their instructors as soon as possible to make alternative arrangements for classes, assignments, and tests.

The instructor and University reserve the right to modify elements of the course during the term. The university may change the dates and deadlines for any or all courses in extreme circumstances. If either type of modification becomes necessary, reasonable notice and communication with the students will be given with explanation and the opportunity to comment on changes. It is the responsibility of the student to check their McMaster email and course websites weekly during the term and to note any changes.

In this course we will be using Avenue2Learn. Students should be aware that, when they access the electronic components of this course, private information such as first and last names, user names for the McMaster e-mail accounts, and program affiliation may become apparent to all other students in the same course. The available information is dependent on the technology used. Continuation in this course will be deemed consent to this disclosure. If you have any questions or concerns about such disclosure please discuss this with the course instructor.