
The Wilson laboratory studies the impacts of environmental stressors on aquatic organisms, with a strong emphasis on aquatic toxicology research. Our research intersects environmental physiology, ecology and evolution, and bioinformatics and functional genomics. Our basic research program focuses on the evolution, regulation and function of cytochrome P450 enzymes; enzymes that are critical for xenobiotic metabolism and steroid production. Cytochrome P450 enzymes are an important superfamily involved in chemical defense. Our environmental physiology research examines the impacts of contaminants (e.g. human drugs, metals, complex effluents), temperature, and low dose radiation. We are particularly interested in the effects on development, growth, and reproduction. The biological approaches used in the lab are quite diverse and include gene expression, histology, protein assays (e.g. enzyme activity, steroid levels), morphometrics, growth, and behaviour. Likewise, our species of interest are diverse. Our primary fish model species are zebrafish and rainbow trout but we include important native species such as lake whitefish, round whitefish, and Arctic charr. For invertebrate systems, we use the brown and green hydra, both freshwater Cnidarian species, and a marine annelid Capitella telata.
Environmental Physiology